Arm Locking in a LISA-like Hardware Model

James Ira Thorpe & The UF LISA Group
University of Florida

6th International LISA Symposium Goddard Space Flight Center - Greenbelt, MD June 23rd, 2006

-Supported by NASA/OSS – BEFS04-0019-0019

Arm-Locking*

Use LISA arm as a frequency reference

- \circ Open-Loop Transfer Function $T_{OL}\left(s\right)=G\left(s\right)\cdot\left(1-e^{-s\tau}\right)$
- $^{\circ}$ No signal at Fourier frequencies $f=f_n\equiv n/ au$ n=1,2,3...
 - no phase noise suppression
 - no GW signal

^{*}Sheard, et. al "Laser Frequency Stabilization by locking to a LISA arm" *Phys. Lett. A* 2003

Controller Design

System Transfer Function

$$T_{sys}(s) = \frac{1}{s} \left(1 - e^{-s\tau} \right)$$

- $^{\circ}$ Zero phase margin at $f = f_n$
 - If $f_{UG} > f_1$, controller must provide phase margin.
 - Solution Controller of S^{α} provides phase margin of $\alpha\pi/2$

- $^{\bullet}$ $f ≪ f_1$, α = -1,-2 large gain at low frequencies
- $f_1 \le f < f_{UG}$, $0.1 \le \alpha \le 0.8$ phase margin at high frequencies

Arm-locking Variants

 $f_1 \approx 30 \text{mHz}$

(Round-trip arm length)

Common

 J_1

(Difference between arms)

Sagnac

 $f_1 \approx 20 \text{kHz}$

(constellation rotation)

Closed Loop Dynamics

Closed-Loop Transfer Function

$$T_{CL}(s) = \frac{1}{1 + T_{OL}(s)}$$

Noise suppression when

$$\left|1 + T_{OL}\left(s\right)\right| > 1$$

Noise enhancement when

$$\left|1 + T_{OL}\left(s\right)\right| < 1$$

Plot values: G =
$$2s^{-1/2}$$
, $\frac{1}{20\tau} \le f \le \frac{5}{\tau}$

Noise suppression at most frequencies, narrow noise spikes near $f_n = n/\tau$

Questions & Concerns

- Stability
 - steady-state
 - transient
- Interaction with other IMS systems
 - reference cavity
 - phase meter
 - transponder locks
- Realization of control filter

Want to face these and other problems? Try to build it!

Modeling LISA Interferometry

UF technique:

- Laser Phase replaced by beat note phase
- Beat note phase delayed electronically (EPD).
- LISA photodiodes replaced by electronic mixers.

An EPD-based model of Arm-Locking

LISA6 – June 23rd, 2006

An EPD-based model of Arm-Locking

Beat note phase noise:

$$S_{20} = \frac{(p_1 - p_0) + p_{LO}}{1 + G_{AL} (1 - e^{-s\tau})}$$

Compare to LISA:

$$\phi_2 = \frac{p_1 + p_{LO}}{1 + G_{AL} \left(1 - e^{-s\tau} \right)}$$

System Parameters – Phase Noise*

- Noise Sources:
 - SiC cavity
 - Zerodur Cavity
 - Phase Lock Loop
 - RF Oscillators
 - Control Electronics
 - etc

* Cavity systems built by Rachel Cruz & Co.

System Parameters – Interferometer

- Analog "phasemeter" has small dynamic range
- EPD using 25 MHz digitization rate, delay of 1.065ms, $f_1 = 939$ Hz

Controller

- Mybrid digital/analog system
- Bandwidth limited by delays in digital system.
- Additional integrators add gain at low frequencies

Results - Error Point Noise

Results – Frequency Noise

Out-of-loop measurement of primary beat note using frequency counter.

Results - Phase Noise

- Out-of-loop
- Primary beat note demodulated to 10kHz
- Phase of 10kHz signal measured using software phase meter.

Closed-loop Noise Supression

Improvements

- Improve pre-stabilization
 - return to Zerodur-Zerodur beat (long-term drift)
 - improve electronics (high-frequency noise)
 - reduce acoustic coupling (high-frequency noise)
- Increase controller bandwidth
 - faster digital electronics
- Increase linear range
 - add hardware phase meter in the loop
- Increase time delay to LISA-like levels
 - contingent upon above results

Summary

- Arm-locking could be used to relax requirements on laser stabilization and TDI in LISA
- But it should be tested! (need to model large OPLs)
- UF technique provides model with realistic noise and realistic transfer functions.
- Arm-lock achieved with 1ms delay, but bandwidth is low
- Improvements in system components should allow demonstration of arm-locking with improved performance and full LISA delays.

UF LISA Team

Guido **Mueller**

David Tanner

Sergei **Klimenko**

Ira **Thorpe**

Rachel Cruz

Sridhar Reddy

Rodrigo Delgadillo

Michael Hartmann

Gabriel Boothe

Aaron Worley

Results - Comparison

